Conic Approximation of Convolution Curve
نویسندگان
چکیده
Given two planar curves, a convolution curve is computed by applying vector sums to all pairs of curve points which have the same curve normal direction. The convolution curve can be used to compute Minkowski sum of two planar objects which is important in various geometric computations such as collision detection and font design. In this paper, we present an algorithm to generate a conic approximation of convolution curve computed from two conics. Conics play an important role in geometric design to represent primitive objects such as parabola, ellipse, and hyperbola. Our algorithm can be directly applied to compute the boundary of a Minkowski sum of two planar objects bounded by piecewise conics. We derive the necessary condition of cusp and describe the method of cusp detection. As an application, we demonstrate the piecewise conic approximation of the boundary of a Minkowski sum computed from two input curves.
منابع مشابه
Geometric Conic Spline Approximation in Cagd
We characterize the best geometric conic approximation to regular plane curve and verify its uniqueness. Our characterization for the best geometric conic approximation can be applied to degree reduction, offset curve approximation or convolution curve approximation which are very frequently occurred in CAGD(Computer Aided Geometric Design). We also present the numerical results for these appli...
متن کاملA Highly Accurate Approximation of Conic Sections by Quartic Bézier Curves
A new approximation method for conic section by quartic Bézier curves is proposed. This method is based on the quartic Bézier approximation of circular arcs. We give the upper bound of Hausdorff distance between the conic section and the quartic Bézier curve, and also show that the approximation order is eight. And we prove that our approximation method has a smaller upper bound than previous q...
متن کاملACS Algorithms for Complex Shapes with Certified Numerics and Topology Minimizing the symmetric difference distance in conic spline approximation
We show that the complexity (the number of elements) of an optimal parabolic or conic spline approximating a smooth curve with non-vanishing curvature to within symmetric difference distance ε is c1 ε −1/4 + O(1), if the spline consists of parabolic arcs and c2 ε −1/5 +O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the affine curvature of...
متن کاملMinimizing the symmetric difference distance in conic spline approximation
We show that the complexity (the number of elements) of an optimal parabolic or conic spline approximating a smooth curve with nonvanishing curvature to within symmetric difference distance ε is c1 ε −1/4 + O(1), if the spline consists of parabolic arcs and c2 ε −1/5 +O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the affine curvature of ...
متن کاملPolynomial/Rational Approximation of Minkowski Sum Boundary Curves 1
Given two planar curves, their convolution curve is defined as the set of all vector sums generated by all pairs of curve points which have the same curve normal direction. The Minkowski sum of two planar objects is closely related to the convolution curve of the two object boundary curves. That is, the convolution curve is a superset of the Minkowski sum boundary. By eliminating all redundant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000